Synthesis and Characterization of the Water-Soluble, All-Inorganic Composition, Keggin- Type Triniobium(V)-Substituted SiW₉Nb₃O₄₀⁷⁻ Heteropolyoxoanions with Alkali Metal Countercations (Li⁺, Na⁺, K⁺, and Cs⁺)[#]

Kenji Nomiya,* Katsunori Ohsawa, Takayuki Taguchi, Masahiko Kaneko, and Toshio Takayama†

Department of Materials Science, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293

†Department of Applied Chemistry, Faculty of Engineering, Kanagawa University, Rokkakubashi, Yokohama, Kanagawa 221-8686

(Received May 11, 1998)

The Keggin-type triniobium(V)-substituted tungstoheteropolyanion, $A-\beta-SiW_9Nb_3O_{40}^{7-}$, was synthesized as its hepta alkali-metal salts of Li⁺, Na⁺, K⁺, and Cs⁺ countercations. These alkali-metal salts were useful for allowing the crystallization of $SiW_9Nb_3O_{40}^{7-}$, itself, and/or the $SiW_9Nb_3O_{40}^{7-}$ -supported organometallic complexes, as well as controlling the water solubility of these complexes. The analytically pure compounds, obtained as homogeneous colorless solids via a stoichiometric reaction of the $(Bu_4N)_6H_2Si_2W_{18}Nb_6O_{77}$, $(Nb-O-Nb)_3$ -bridged anhydride with the corresponding alkali tetrafluoroborates, and then with the alkali hydroxides, were compositionally characterized by complete elemental analyses, TG/DTA and FABMS spectra. They were structurally characterized by FT-IR and solution ¹⁸³W NMR measurements, as well as solid-state CP/MAS and GHD/MAS ²⁹Si NMR and solution ²⁹Si NMR measurements. The cation-dependent properties of these heteropolytungstates in the solid state were observed in the thermal stabilities, the amounts of hydrated water and adsorbed water, the solubilities in water and in organic solvents, and in the ease of crystallization.

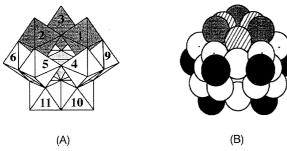
Polyoxoanions are molecular metal-oxide clusters which resemble discrete fragments of solid metal oxides. The chemistry of triniobium(V)-substituted Dawson- and Keggin-type heteropolytungstates, which has been exploited by Finke's group, has been extended not only to the synthesis and characterization of novel polyoxoanion-supported organometallic complexes as their organic-solvent soluble forms in all-Bu₄N salts and mixed Bu₄N/Na salts, ¹⁾ but also to novel catalyst precursors for the hydrogenation of cyclohexene, ^{2a)} the oxidation of cyclohexene with dioxygen, ^{2b)} and allylic epoxidation with H₂O₂; ^{2d)} more recently, these complexes have led to iridium nanocluster chemistry. ^{2c,2f)}

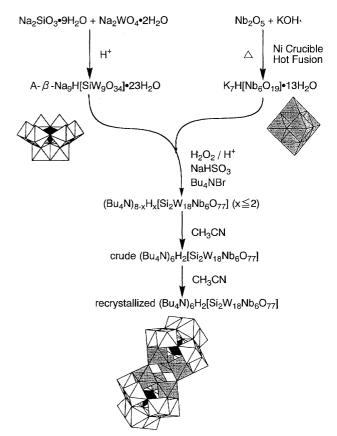
In our own work, we recently reported on the isolation of a nonasodium salt of the Dawson-type triniobium-substituted polyoxoanion $P_2W_{15}Nb_3O_{62}^{9-,1a)}$ and also on the heptasodium salt of polyoxoanion-supported organometallic complex $[\{\eta^5-C_5Me_5)Rh\}P_2W_{15}Nb_3O_{62}]^{7-,1e)}$ These studies, the syntheses of the water-soluble, all-inorganic composition compounds, were initially aimed at solving a crystallization problem, that is, the finding that organic-solvent soluble and water-insoluble forms, such as all-Bu₄N salts or mixed Bu₄N/Na salts, were hard to crystallize. In fact, crystal-structure determinations

for this class of polyoxoanions have been limited to $Na_9P_2W_{15}Nb_3O_{62}\cdot 23H_2O\cdot 2MeCN^{1f}$) and $Na(Bu_4N)_6[\{(\eta^5-C_5Me_5)Rh\}P_2W_{15}Nb_3O_{62}]\cdot 10MeCN\cdot 10Me_2CO.^{1d})$ Very recently, through the synthesis of the alkali-metal salts (Li⁺, Na^+ , K^+ , and Cs^+), we also clarified the cation-dependent properties of the $P_2W_{15}Nb_3O_{62}^{9-}$ polyoxoanion, including its thermal stability, solubility, ease of crystallization, hydration structure around the polyoxoanion, and solid-state ion-pairing interaction between the countercation and the polyoxoanion. ^{1j)} In a separate account, it has been well-documented that the amount of solvated water [and, therefore, the porosity, thermal stability and surface area in the heterogeneous catalysts by classical Keggin heteropolyanions $PM_{12}O_{40}^{3-}$ (M=Mo and W)] can be controlled by salt-formation with different counterions.³⁾

In the Keggin-type polyoxoanion $SiW_9Nb_3O_{40}^{7-}$, three niobium atoms are substituted in the A-site of the β -Keggin structure (Fig. 1A). In its polyoxoanion-supported complex, the organometallic group $[(\eta^5-C_5Me_5)Rh]^{2+}$ is bonded to two bridging W–O–Nb oxygens and a bridging W–O–W oxygen that occupy the B-site of the Keggin-type polyoxoanion $SiW_9Nb_3O_{40}^{7-}$. In the present work we extended the concept of *water solubility* and *an all-inorganic composition* in the Dawson type heteropolytungstates to the Keggin-type heteropolytungstates, specifically to the syntheses of the heptasodium salt of Keggin-type trisubstituted polyoxo-

[#] This work follows our previous work in the Refs. 1a, 1e, 1j, and 4d




Fig. 1. (A) polyhedral and (B) space-filling representation of the Keggin-type heteropolyanion β-1,2,3-SiW₉Nb₃O₄₀⁷⁻. In (A) the three niobiums are represented by gray octahedra in the 1—3 positions. The WO₆ octahedra occupy the 4—12 positions and one SiO₄ group is shown as the internal, tetrahedron. In (B) the open circles represent bridging tungsten oxygens (W₂O), while the black circles represent terminal tungsten oxygens (WO). Niobium bridging oxygens (Nb-O-Nb and Nb-O-W) are depicted by hatched and dotted circles, respectively, whereas niobium terminal oxygens (NbO) are shown as gray circles. From the space-filling representation it becomes clear that heteropolyoxoanions are composed of a close-packed array of oxygens, and this representation in turn reveals their potential as soluble metal-oxide analogs.

anion $SiW_9Nb_3O_{40}^{7-}$ and the pentasodium salt of polyoxoanion-supported organometallic complex [$\{(\eta^5-C_5Me_5)-Rh\}SiW_9Nb_3O_{40}\}^{5-}$. Isolation of the all-sodium salts has required their own preparation and purification schemes, including the proper choice of an appropriate solvent system: The all-sodium salt of the polyoxoanion-supported complex was derived from the all-sodium salt of the polyoxoanion in mixed DMSO/CH₃CN media with rather specific volume ratios. [1a,1e,1j,4d)

Herein we report on the full details concerning the synthesis and isolation of the all-inorganic composition salts of SiW₉Nb₃O₄₀⁷⁻ as its K⁺ salt and with 5—6 hydrated water (1), as its Li⁺ salt with 11—12 water (2), and as its Cs⁺ salt with 7—8 water (3) under atmospheric conditions. Reported also are the compositional characterizations of 1—3 by full elemental analyses, as well as thermogravimetric and differential thermal analyses (TG/DTA), and of 1 by fast atom bombardment mass spectroscopy (FABMS); their structural characterization has been substantiated by FT-IR, by variable-temperature solid-state ²⁹Si NMR and by room-temperature solution ¹⁸³W and ²⁹Si NMR spectroscopies. The thermal stabilities of 1—3 were determined by a combination of TG/DTA and FT-IR measurements.

Experimental

General Conditions. The following were used as received: Nb₂O₅, LiOH, KOH (85%), Na₂SiO₃·9H₂O, Na₂WO₄·2H₂O, NaHSO₃, NaBF₄, KBF₄, HBF₄, $(n\text{-}C_4H_9)_4\text{NBr}$, 12 M, 6 M, and 0.5 M HCl (aq), 30% H₂O₂ (aq), 0.5 M NaOH (aq), 0.5 M KOH (aq), ethanol, diethyl ether, acetone, acetonitrile (all from Wako) (1 M = 1 mol dm⁻³); CsOH (Kanto); LiBF₄ (Aldrich) and D₂O, DMSO- d_6 (99.9 atom % D, containing 0.05% TMS (v/v)), TMS (Merck). Solid CsBF₄ was prepared in analogy with the synthesis of

Scheme 1. Preparation of $[(n-C_4H_9)_4N]_6H_2Si_2W_{18}Nb_6O_{77}$.

KBF₄ reported in the literature. $^{5,6)}$ [$(n-C_4H_9)_4N$]₆H₂Si₂W₁₈Nb₆O₇₇ was prepared as previously described^{4b)} via the five steps shown in Scheme 1.

Instrumentation and Analytical Procedures. Elemental analyses on samples dried overnight at room temperature under 10^{-3} — 10^{-4} Torr (1 Torr = 133.322 Pa) were carried out by Mikroanalytishes Labor Pascher (Remagen, Germany). Infrared spectra were recorded on a Nicolet 510 FT-IR spectrometer in KBr disks at room temperature. TG/DTA were carried out using Rigaku TG 8101D and TAS 300 data-processing system. TG/DTA measurements were run under air with a temperature ramp of 5 °C min⁻¹ between 20 and 500 °C.

FAB mass spectral measurements were carried out at the Environmental Health Sciences Center, Oregon State University (Corvallis, Oregon, USA) using a Kratos MS-50TC mass spectrometer (Manchester, England) and Kratos DS-90 data-processing system. Approximately a 50 μg sample was dissolved in 2 μL of 0.1 M oxalic acid in 2:1 thioglycerol/glycerol directly on the target. The positive-ion spectra were acquired with an acceleration voltage of 8 kV, using an Ion Tech FAB gun (Teddington, UK), at 7—8 kV with xenon gas. The scan speed was 30 seconds/decade, and the mass resolving power was either 1000 or 2500.

Solution ¹⁸³W NMR (16.50 MHz) spectra were recorded at 25 °C in 10 mm o.d. tubes on a JEOL JNM-EX 400 FT-NMR spectrometer equipped with a JEOL NM-40T10L low-frequency tunable probe and a JEOL EX-400 NMR data-processing system. ¹⁸³W NMR spectra were measured in D_2O^{7} and referenced to an external standard of saturated Na₂WO₄–D₂O solution by the substitution method. Chemical shifts were reported on the δ scale with resonances upfield of Na₂WO₄ (δ = 0) as negative.

Solution ²⁹Si NMR (79.30 MHz) spectra were recorded at 25

°C in 5 mm o.d. quartz glass tubes for ²⁹Si NMR measurements on a JEOL JNM-EX 400 FT-NMR spectrometer. These spectra were measured in a D₂O solution with reference to an external standard of DSS in a D₂O solution, and in a DMSO- d_6 solution with reference to an external standard of TMS, both by the substitution method. Chemical shifts were reported on the δ scale with resonances upfield of DSS or TMS (δ = 0) as negative.

Solid-state ²⁹Si NMR spectra (53.54 MHz) were recorded on a JEOL EX 270 spectrometer. A variable-temperature (VT) controller was used for the probe temperature control and measurements. Two different pulse sequences were used: the usual spin-lock cross-polarization (CP) sequence and a single 90° pulse in combination with high-power proton decoupling (GHD) without cross-polarization. For the two complexes $(M = Li^+)$ and K^+ the ²⁹Si NMR spectra were measured by the CP/MAS (magic angle spinning) method, but for the complexes $(M = Na^{+} \text{ and } Cs^{+})$ the spectra were measured by the GHD method because of the low signal-to-noise (S/N) ratio with the CP/MAS method. Specimens (ca. 100 mg) were contained in a silicon nitride ceramic cylindrical-type rotor. Line narrowing was achieved by high-order decoupling and magic-angle spinning. The spinning rate was set to about 6 kHz. The spectral width and data points were 10.0 kHz and 8 k, respectively. The spectra were accumulated 5000—10000 times at a repetition time of 5 s to achieve a reasonable S/N. The chemical shifts were calibrated indirectly through external polydimethylsilane (PDMS; -34.11 ppm relative to TMS with $\delta = 0$). The experimental errors of the isotropic ²⁹Si chemical-shift values were estimated to be about 0.5 ppm. Spinning side bands did not appear due to the use of a sufficient spinning rate.

Synthesis of $K_7SiW_9Nb_3O_{40} \cdot xH_2O$ [x=5-6] (1). In a 200-mL beaker were placed 5.00 g (0.756 mmol) of [$(n-C_4H_9)_4N]_6H_2Si_2W_{18}Nb_6O_{77}$ and 50 mL of CH_3CN . Warming the mixture to 50-60 °C and stirring resulted in a clear pale-yellow solution. To the solution solid KBF_4 (0.571 g, 4.536 mmol, 6 equiv) was added, followed by stirring for 1 h, during which time all of the KBF_4 did not dissolve. To this suspension, 12.1 mL (6.05 mmol, 8 equiv) of a 0.50 M KOH aqueous solution was added. At the bottom of the beaker, an oily material formed. Stirring was continued for 30 min. The solution was cooled to room temperature and then stored in a refrigerator at 5 °C for two days. A white precipitate formed. After removing the mother liquor by decantation, the residue was washed with CH_3CN (30 mL×3). The residue in the beaker was placed in an oven at 55 °C overnight.

Purification was accomplished by repeated reprecipitations with excess CH₃CN from a solution of unbuffered pH 8 water ([(n-C₄H₉)₄N]BF₄ is soluble in CH₃CN, whereas the heptapotassium salt of the heteropolytungstate is not). This crude precipitate was redissolved in 30 mL of unbuffered pH 8 water, followed by filtration through a folded filter paper (Whatman No. 2). To the clear, colorless filtrate with stirring, 300 mL of CH₃CN was slowly added from a dropping funnel at a rate of one drop per second. A white powder which formed at the bottom of the beaker was stored in a refrigerator overnight. This white precipitate was collected on a fine glass frit, washed with CH₃CN (50 mL × 3) and then dried in an oven at 55 °C overnight. The reprecipitation, from a solution of unbuffered pH 8 water using excess of CH₃CN, was repeated twice. The yield of white powder was 1.1 g (24.5%, for the x = 5 hydrated species).


It was confirmed by the disappearance of the FT-IR 1084 cm⁻¹ band that the contaminated BF₄⁻ was completely removed by the present work-up. The final compound was hygroscopic, very soluble in water and soluble in DMSO, but insoluble in CH₃CN, methanol, ethanol, THF, 1,4-dioxane, acetone, ether, dichloromethane,

and ethyl acetate.

This compound was readily crystallized as colorless needles within a week with vapor diffusion from 25 mL acetone into an aqueous solution of 0.2 g of the sample dissolved in 3.0 mL of pH 8 unbuffered solution. The crystals, collected on a medium glass frit and washed 4—5 times with a small amount of acetone, were obtained in 0.17 g (85%) yield.

Microanalysis. Found: H, 0.12; K, 9.43; Si, 1.06; W, 57.4; Nb, 9.65; O, 23.3; total 100.96%. Calcd for H₂K₇SiW₉Nb₃O₄₁, or K₇SiW₉Nb₃O₄₀•H₂O: H, 0.07; K, 9.43; Si, 0.97; W, 57.2; Nb, 9.63; O, 22.7%. A weight loss of 3.54% (weakly solvated or adsorbed water) was observed during overnight drying at room temperature under reduced pressure $(10^{-3}-10^{-4} \text{ Torr})$ before the analysis. TG/DTA was performed under atmospheric conditions: a weight loss of 3.38% was found with a temperature ramp of 5 °C min⁻¹ below 500 °C, with a clear endothermic point at 90.5 °C; calcd 3.03% for x = 5 and 3.62% for x = 6 in $K_7SiW_9Nb_3O_{40} \cdot xH_2O$. A positive-ion FABMS (Fig. 2): a molecular ion peak, $[M+H]^+ = m/z$ 2875.8 was observed for $M = K_7 SiW_9 Nb_3 O_{40}$. IR (KBr) (Fig. 3(b)): 993m, 954s, 883s, 794s, 539m, 474w cm⁻¹. ¹⁸³W NMR (D₂O, 25 °C) $\delta = -118.0$ (6W, $\Delta v_{1/2} = 1.7$ Hz), -124.9 (3W, $\Delta v_{1/2} = 1.8$ Hz). 183 W NMR (DMSO- d_6 , 25 °C) $\delta = -95.1$ (6W, $\Delta v_{1/2} =$ 4.5 Hz), -113.1 (3W, $\Delta v_{1/2} = 2.8$ Hz). ²⁹Si NMR (D₂O, 25 °C) (Fig. 5(b)) $\delta = -82.8$; Solid-state ²⁹Si NMR (CP/MAS 80 Hz, 25 °C) (Fig. 5(a)) $\delta = -81.5$; Solid-state ²⁹Si NMR (GHD/MAS 40 Hz, 25 °C) $\delta = -81.8$; Solid-state ²⁹Si NMR (GHD/MAS 40 Hz, 70 °C) $\delta = -79$; Solid-state ²⁹Si NMR (GHD/MAS 40 Hz, 100 $^{\circ}$ C) $\delta = -81$.

The synthetic procedure has been successfully scaled-up by a

	Found	Calcd	Formula	
	2913.7	2914	[M+K] ⁺	
b	2895.8	2898	$[M+K-O]^+$	
c	2875.8	2876	$[M+H]^+$	
d	2858.8	2860	$[M+H-O]^+$	
e	2839.8	2838	$[M-K+2H]^{+}$	
f	2819.9	2822	$[M-K+2H-O]^{+}$	
g	2803.9	2800	$[M-2K+3H]^{+}$	
h	2783.9	2784	$[M-2K+3H-O]^{+}$	

Fig. 2. Positive-ion FAB mass spectrum of K₇SiW₉Nb₃O₄₀,
1. Only peaks corresponding to cation exchange and loss of O, as well as the molecular ion peak [M+H]⁺, are observed, where M = K₇SiW₉Nb₃O₄₀.

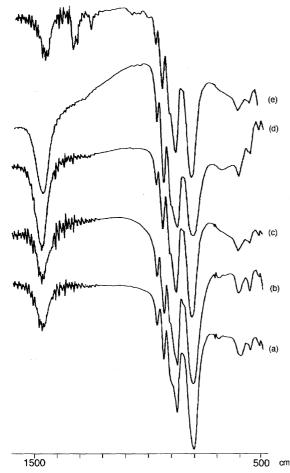
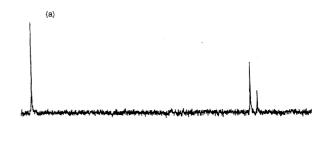


Fig. 3. The FT-IR spectra, measured as KBr disks of (a) $Cs_7SiW_9Nb_3O_{40}$, **3** of (b) $K_7SiW_9Nb_3O_{40}$, **1** of (c) $Na_7SiW_9Nb_3O_{40}$, **4** of (d) $Li_7SiW_9Nb_3O_{40}$, **2** and of (e) $[(n-C_4H_9)_4N]_7SiW_9Nb_3O_{40}$ demonstrating that the polyoxoanion region (1100—700 cm⁻¹) of the IR bands of these salts are completely coincident, except for the vibrational bands characteristic of $[(n-C_4H_9)_4N]^+$ (1380—1485 cm⁻¹).

factor of 4, resulting in an 8.2 g (50%) yield, and was independently and successfully repeated by one of us.

Microanalysis. Found: H, 0.40; K, 9.03; Si, 1.6; W, 56.8; Nb, 9.47; O, 22.9; total 100.2%. Calcd for H₆K₇SiW₉Nb₃O₄₃, or K₇SiW₉Nb₃O₄₀·3H₂O: H, 0.21; K, 9.34; Si, 1.0; W, 56.5; Nb, 9.52; O, 23.5%. The weight loss observed during drying overnight at room temperature under reduced pressure before the analysis: 2.88%. TG/DTA done under atmospheric conditions: weight loss of 5.28% found below 500 °C; calcd 5.28% for x = 11 in K₇SiW₉Nb₃O₄₀·xH₂O. IR (KBr) 1633s (H₂O), 994m, 955s, 885s, 795s, 538m, 475m cm⁻¹. ¹⁸³W NMR (D₂O, 25 °C) $\delta = -118$ (6W), -125 (3W).


Synthesis of $\text{Li}_7\text{SiW}_9\text{Nb}_3\text{O}_{40}\cdot x\text{H}_2\text{O}$ [x=11-12] (2). Handling of the very hygroscopic LiBF₄ was performed in a glove box. The target compound was formed in an aqueous/CH₃CN system and isolated by reprecipitation with excess acetone from a solution of unbuffered pH 8 water.

In a glove box, $0.426 \, g$ ($4.536 \, mmol$, $6 \, equiv$) of solid LiBF₄ was added to $5.00 \, g$ ($0.756 \, mmol$) of $[(n-C_4H_9)_4N]_6H_2Si_2W_{18}Nb_6O_{77}$ dissolved completely in 50 mL of CH₃CN in a 200-mL beaker. During 20-min stirring, a clear colorless solution was obtained. After an additional 1 h stirring, a clear solution was taken out of the

glove box. To the solution 12.1 mL (6.05 mmol, 8 equiv) of a 0.5 M LiOH aqueous solution was added dropwise using a pipet. The stirred solution became cloudy, and then a colorless oil formed at the bottom of the beaker. Stirring was continued for an additional 30 min, and then the solution was placed in a refrigerator at $5\,^{\circ}$ C overnight. The clear supernatant mother liquor was discarded by decantation and the colorless, oily precipitate was washed three times with 30 mL CH₃CN. The resulting oil was dried in an oven at $55\,^{\circ}$ C.

The crude material was redissolved in 50 mL of unbuffered pH 8 water, which had been prepared using a 0.5 M LiOH aqueous solution. The solution was filtered once through filter paper (Whatman No. 2). To the stirred, clear and colorless filtrate, 300 mL of CH₃CN was added dropwise from a dropping funnel. The solution changed to a cloudy suspension, and a white, oily precipitate reprecipitated at the bottom of the beaker. After standing in a refrigerator at 5 °C overnight, the mother liquor was removed by decantation, and the white precipitate was washed three times with 30 mL CH₃CN, then dried overnight in an oven at 55 °C. This reprecipitation procedure was repeated twice more. A white powder was obtained in 2.3 g yield (53.4%, for the x = 11 hydrated species). Compound 2 was very hygroscopic, extremely soluble in water and moderately soluble in MeOH, EtOH, DMF, and DMSO, but insoluble in CH₃CN, acetone, ether, benzene, hexane, and ethyl acetate.

Microanalysis. Found: H, 0.41; Li, 1.67; Si, 1.09; W, 59.8; Nb, 10.2; O, 25.8; total 99.0%. Calcd for $H_{10}Li_7SiW_9Nb_3O_{45}$, or $Li_7SiW_9Nb_3O_{40} \cdot 5H_2O$: H, 0.37; Li, 1.77; Si, 1.02; W, 60.4; Nb, 10.2; O, 26.3%. The weight loss observed during drying overnight at room temperature under reduced pressure $(10^{-3} - 10^{-4} \text{ Torr})$ before the analysis: 4.45%. TG/DTA done under atmospheric conditions: weight loss of 7.23% found with a temperature ramp of 5 °C min⁻¹ below 440 °C, with a clear endothermic point at 104.7 °C; calcd 6.95% for x = 11 and 7.53% for x = 12 in $Li_7SiW_9Nb_3O_{40} \cdot xH_2O$. IR (KBr) (Fig. 3(d)): 996m, 884s, 795s, 539m, 473m cm⁻¹. ¹⁸³W NMR (D₂O, 25 °C) (Fig. 4(a)) $\delta = -122.2$ (6W, $\Delta v_{1/2} = 3.7$ Hz), -128.2 (3W, $\Delta v_{1/2} = 3.8$ Hz). ¹⁸³W NMR (DMSO- d_6 , 25 °C) (Fig. 4(b)) $\delta = -95.0$ (6W,

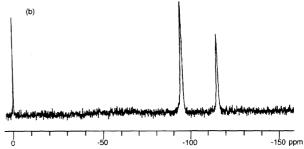
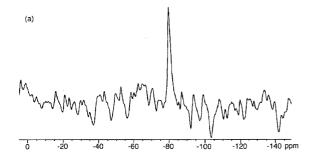



Fig. 4. Solution ¹⁸³W NMR of Li₇SiW₉Nb₃O₄₀ **2** measured at 25 °C in (a) D₂O and (b) DMSO-d₆.

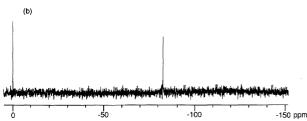


Fig. 5. Solid-state CP/MAS 29 Si NMR (a) and solution 29 Si NMR in D_2O (b), measured at 25 °C, of K_7 Si W_9 Nb $_3O_{40}$ 1.

 $\Delta v_{1/2} = 19.2 \text{ Hz}$), $-115.2 (3\text{W}, \Delta v_{1/2} = 15.3 \text{ Hz})$. ²⁹Si NMR (D₂O, 25 °C) $\delta = -82.9$; Solid-state ²⁹Si NMR (CP/MAS 40 Hz, 26 °C) $\delta = -81.7$; Solid-state ²⁹Si NMR (GHD/MAS 40 Hz, 25 °C) $\delta = -81.9$; Solid-state ²⁹Si NMR (GHD/MAS 10 Hz, 25 °C) $\delta = -81.7$.

Synthesis of Cs₇SiW₉Nb₃O₄₀·xH₂O [x = 7—8] (3). In a 200mL beaker 5.00 g (0.756 mmol) of $[(n-C_4H_9)_4N]_6H_2Si_2W_{18}Nb_6O_{77}$ was dissolved in 50 mL of CH₃CN that had been previously welldried by molecular sieves 3A. To a clear solution, 1.007 g (4.551 mmol, 6 equiv) of CsBF₄ was added. Within one hour of stirring the solution became clear [Note: sometimes the solution became cloudy, when the CH₃CN used was not thoroughly dried]. To the clear solution, 12.1 mL (6.05 mmol, 8 equiv) of a 0.5 M CsOH aqueous solution was added using a pipet; the 0.5 M CsOH solution was previously prepared by dissolving solid CsOH in water and the concentration was determined by titration with 0.5 M hydrochloric acid. The resulting suspension was stirred at room temperature overnight. A white precipitate, collected on a fine glass frit, was washed three times with 50 mL CH₃CN and then dried in an oven at 55 °C overnight. At this stage the yield of white powder was 3.6 g.

The 3.6 g of crude material was redissolved in 50 mL of warm, unbuffered pH 8 solution, (prepared using a 0.5 M CsOH aqueous solution), followed by heating at 50 °C. The clear colorless filtrate was passed once through a folded filter paper (Whatman No. 2). Next, 300 mL CH₃CN was added dropwise using a dropping funnel. The solution containing the white precipitate was placed in a refrigerator at 5 °C overnight. The resulting colorless powder was collected on a fine glass frit, washed three times with 50 mL CH₃CN, and then dried in an oven at 55 °C overnight. The resultant white powder was finally obtained in 1.5 g yield (27.1%, for the x = 7 hydrated species). It was sparingly cold water-soluble, but

hot water-soluble, and organic solvent-insoluble as expected.

Microanalysis. Found: H, 0.08; Cs, 26.0; Si, 0.88; W, 46.4; Nb, 7.88; O, 19.1; total 100.3%. Calcd for H₆Cs₇SiW₉Nb₃O₄₃, or Cs₇SiW₉Nb₃O₄₀·3H₂O: H, 0.17; Cs, 25.9; Si, 0.78; W, 46.2; Nb, 7.77; O, 19.2%. The weight loss observed during drying at room temperature under 10^{-3} — 10^{-4} Torr overnight before the analysis: 3.89%. TG/DTA done under atmospheric conditions: weight loss of 3.56% found with a temperature ramp of 5 °C min⁻¹ below 500 °C with an endothermic point at 99.8 °C; calcd 3.44% for x = 7 and 3.91% for x = 8 in Cs₇SiW₉Nb₃O₄₀·xH₂O. IR (KBr) (Fig. 3(a)) 956m, 884s, 788s, 529m cm⁻¹. ¹⁸³W NMR (D₂O, 70 °C) $\delta = -110.6$ (6W, $\Delta v_{1/2} = 5.72 \pm 0.31$ Hz), -118.3 (3W, $\Delta v_{1/2} = 4.31 \pm 0.31$ Hz). Solid-state ²⁹Si NMR (GHD/MAS, at 25 °C) $\delta = -81$.

Synthesis of Na₇**SiW**₉**Nb**₃**O**₄₀·x**H**₂**O** [x = 16—17] (4). This compound was previously prepared on an 11.3 g scale and fully characterized in the form with x = 16 water. Here, the compound was reprepared in a yield of 2.6 g (56%), recharacterized and compared with the properties of compounds 1—3 under the same conditions. The amount of water of hydration under atmospheric conditions found previously (x = 16)^{4d)} was observed herein to be reproducible.

Microanalysis. Found: H, 0.30; Na, 5.73; Si, 1.04; W, 58.2; Nb, 9.90; O, 24.4; total 99.6%. Calcd for H₈Na₇SiW₉Nb₃O₄₄, or Na₇SiW₉Nb₃O₄₀•4H₂O: H, 0.28; Na, 5.68; Si, 0.99; W, 58.4; Nb, 9.83; O, 24.8%. The weight loss observed during drying overnight at room temperature under reduced pressure $(10^{-3} - 10^{-4} \text{ Torr})$ before the analysis: 4.17%. TG/DTA done under atmospheric conditions: weight loss of 9.88% found with a temperature ramp 5 °C min⁻¹ below 500 °C with clear endothermic points at 45.9 and 90.1 °C; calcd 9.44% for x = 16 and 9.97% for x = 17 in Na₇SiW₉Nb₃O₄₀•xH₂O. IR (KBr) (Fig. 3(c)): 958s, 885s, 796s, 538m, 474w cm⁻¹. ¹⁸³W NMR (D₂O, 25 °C) $\delta = -121.6$ (6W, $\Delta v_{1/2} = 2.59$ Hz), -127.7 (3W, $\Delta v_{1/2} = 2.80$ Hz). ¹⁸³W NMR (DMSO- d_6 , 25 °C) $\delta = -93.9$ (6W, $\Delta v_{1/2} = 14.12 \pm 0.31$ Hz), $-114.2 \text{ (3W, } \Delta v_{1/2} = 10.22 \pm 0.31 \text{ Hz)}.$ ²⁹ Si NMR (D₂O, 25 °C) $\delta = -82.8$. ²⁹Si NMR (DMSO- d_6 , 25 °C) $\delta = -82.5$. Solidstate ²⁹Si NMR (GHD/MAS 40 Hz, 25 °C) $\delta = -81.6$; Solid-state ²⁹Si NMR (GHD/MAS 10 Hz, 25 °C) $\delta = -81.6$.

Results and Discussion

Synthetic Reactions, Composition Proof and General Properties. The alkali-metal salts of the Keggin-type heteropolyoxoanion, $SiW_9Nb_3O_{40}^{7-}$, have been derived from a stoichiometric reaction of the organic solvent-soluble, $(Nb-O-Nb)_3$ anhydride precursor $[(n-C_4H_9)_4N]_6H_2Si_2W_{18}Nb_6O_{77}$, with MBF₄ and subsequently with the required amount of MOH (M=Li, Na, K, and Cs) as follows (Eq. 1):

$$[(n-C_4H_9)_4N]_6H_2Si_2W_{18}Nb_6O_{77} + 6MBF_4 + 8MOH \longrightarrow 2M_7SiW_9Nb_3O_{40} + 6[(n-C_4H_9)_4N]BF_4 + 5H_2O$$
 (1)

The key points in the synthesis of $M_7SiW_9Nb_3O_{40}$ (M = Li, Na, K, and Cs) are as follows: (a) the use of stoichiometric amounts (6 equiv) of MBF₄ to allow for an exchange of the 6 $[(n-C_4H_9)_4N]^+$ countercations of the organic solvent-soluble, (Nb–O–Nb)₃ anhydride precursor, $[(n-C_4H_9)_4N]_6H_2Si_2W_{18}Nb_6O_{77}$; (b) the use of a total of 8 equiv of MOH to react with the two protons in the (Nb–O–Nb)₃

anhydride (requiring 2 equiv of OH⁻) and to hydrolytically cleave the three bridging Nb–O–Nb bonds (requiring an additional 6 equiv of OH⁻) and forming a total of 5H₂O; and (c) the removal of [(n-C₄H₉)₄N]BF₄ as a byproduct from the reaction mixture and purification to give analytically pure white solids by reprecipitation with excess CH₃CN from an aqueous solution of unbuffered, pH 8 water.

The molecular formula of K_7 (1), Li_7 (2), Cs_7 (3), and Na₇ (4) salts, with 1 water, 5 water, 3 water, and 4 water, respectively, are based on complete elemental analyses performed for samples dried overnight at room temperature under 10^{-3} — 10^{-4} Torr (all elements, including oxygen, 100.96, 99.0, 100.3, and 99.6%, totals, respectively, are observed; see the Experimental Section). The molecular formula of 1 was also established by the FABMS spectrum in the positive-ion mode (Fig. 2), which showed the parent or molecular ion peak at $[M+H]^+ = m/z$ 2875.8 $(M = K_7 SiW_9 Nb_3 O_{40})$ and the characteristic cation-exchange and fragmentation processes. The cation-exchange process in 1 is clearly observed by K⁺ exchange with H⁺, and the fragmentation pattern is dominated by a loss of O (m/z 16), both processes of which are consistent with other FABMS spectral data previously reported for H₄SiW₁₂O₄₀•26H₂O,^{8a)} $K_4H_3SiW_9V_3O_{40}\boldsymbol{\cdot} 3H_2O,^{8a)}(Bu_4N)_4[(CpTi)SiW_9V_3O_{40}],^{8a,8c)}$ and $(Bu_4N)_6[H_2Si_2W_{18}Nb_6O_{77}]$. 8b) On the other hand, TG/DTA measurements performed under atmospheric conditions show the presence of 5—6 water for 1, 11—12 water for 2, 7—8 water for 3, and 16—17 water for 4, respectively. We have handled these samples, as the indicated hydrated compounds, under atmospheric conditions. The TG data estimate the total amount of water, both intrinsic water of hydration and the adsorbed water from the atmosphere, via the weight loss observed between 20 and 500 °C. The DTA curves clearly show the presence of intrinsic hydrated water as endothermic peaks at 90.5 °C for 1, 104.7 °C for 2, 99.8 °C for 3, and 45.9 and 90.1 °C for 4.

The water-solubility of salts 1-4, judged qualitatively by a preparation of the solution for NMR measurements, is strongly affected by the countercations; the order at room temperature was found to be $2\gg4>1\gg3$. The Li₇ salt 2 is also soluble in several organic solvents, such as MeOH, EtOH, DMF, and DMSO. Of particular note is the ease of crystallization found for the K_7 salt, 1. Thus, each of the following can be significantly affected by countercations: the amounts of intrinsic hydrated water and adsorbed water, solubilities in water and in organic solvents, and the ease of crystallization.

Infrared Spectra and Thermal Analysis. The solid FT-IR spectra (Fig. 3(a)—Fig. 3(d)), measured as KBr disks, of $M_7SiW_9Nb_3O_{40}$ ($M=Li^+$, Na^+ , K^+ , and Cs^+) obtained here and of $[(n-C_4H_9)_4N]_7SiW_9Nb_3O_{40}$ (Fig. 3(e)) separately prepared according to Ref. 4b, are completely coincident (except, of course, the absence of typical vibrational bands due to $[(n-C_4H_9)_4N]^+$ countercations observed in the 1485—1380 cm⁻¹ region in the all alkali-metal salts). In these spectra, the characteristic and intense 690 cm⁻¹ band, due to the vibration of three bridging Nb–O–Nb link-

ages present in the $(Nb-O-Nb)_3$ anhydride precursor [$(n-C_4H_9)_4N]_6H_2Si_2W_{18}Nb_6O_{77}$, 4b) disappears. Infrared measurements confirm that the Keggin-type "Si $W_{12}O_{40}$ " heteropolytungstate framework remains intact under the conditions of the synthesis. 9)

The effect of alkali-metal cations on the thermal-stability of SiW₉Nb₃O₄₀⁷⁻ was observed in the solid state. Exothermic peaks without an accompanying weight loss were observed at around 500 °C with alkali metal ions: 431 °C for the Li salt 2, 517 °C for the Na salt 4, 605 °C for the K salt 1, and 402 °C for the Cs salt 3. FT-IR measurements, after the samples were heated above such exothermic temperatures (up to ca. 998 °C), showed that the Keggin structure of the polyoxoanion is not maintained. Thus, the polyoxoanions degradate or decompose above these exothermic temperatures; such temperatures indicate the following order of relative thermal stability of the polyoxoanions with different cations: K⁺ salt 1≫Na⁺ salt 4≫Li⁺ salt 2>Cs⁺ salt 3. This sequence is in surprising contrast to the cation-dependent thermal stability observed in the Dawson-type $P_2W_{15}Nb_3O_{62}^{9-}$: Cs⁺ salt > K^+ salt $\gg Na^+$ salt $>Li^+$ salt.^{1j)}

Solution $^{183}\mathrm{W}\,\mathrm{NMR}$ Spectra. The ¹⁸³W NMR spectrum of Li₇SiW₉Nb₃O₄₀ 2 in D₂O (Fig. 4(a)) shows primarily two peaks at -122.2 (6W) and -128.2 (3W) ppm with integrated intensities 2:1. The integrated intensities are in accord with the presence of a tungsten belt consisting of six WO₆ octahedra and a tungsten cap of three WO₆ octahedra, as expected for a Keggin heteropolyanion (Fig. 1A). Such a two-line ¹⁸³W NMR spectrum in D₂O was also observed in $K_7SiW_9Nb_3O_{40}$ 1 at $(\delta = -118.0 \text{ and } -124.9)$ and in $Na_7SiW_9Nb_3O_{40}$ 4 at $(\delta = -121.6 \text{ and } -127.7)$. On the other hand, the two-line ¹⁸³W NMR of the Cs₇ salt 3 was measured in D₂O at 70 °C ($\delta = -110.6$ and -118.3) because of its low solubility at room temperature. The two-line ¹⁸³W NMR spectrum requires that the heteropolyanion as a single species has an overall $C_{3\nu}$ symmetry. The clean, twoline ¹⁸³W NMR spectra of 1, 2, and 4 were also observed in a DMSO- d_6 solution, although their chemical shifts were significantly altered ($\delta = -95.1$ and -113.1 for 1, $\delta = -95.0$ and -115.2 for **2** (Fig. 4(b)), $\delta = -93.9$ and -114.2 for **4**) and their line widths were considerably broadened (see the $\Delta_{1/2}$ values in the Experimental Section) due to a solvent effect and/or the rapid equilibrium of the ion-pairing 1g) present

The solution 183 W NMR spectra of the related, Keggintype, tri-substituted and thus overall average $C_{3\nu}$ symmetry heteropolytungstates have been recently measured, specifically the 2:1 sharp signals for the A- β -(Me₄N)₃PW₉Mo₃O₄₀ in CD₃CN at -91.4 and -101.5 ppm, $^{10a)}$ for the A- β -(Bu₄N)₄H₂PW₉V₃O₄₀ in CD₃CN in the presence of 100 equivalents of H₂O at -99.4 and -107.6 ppm, $^{10b)}$ and for A- β -Cs₆PW₉V₃O₄₀ in D₂O, which shows peaks at -106.7 and -117.9 ppm. $^{10b)}$ Finke's group has found that, in the 183 W NMR of A- β -(Bu₄N)₄H₃SiW₉V₃O₄₀ in initially dry CD₃CN at 21 °C, the broad, low S/N 183 W resonance was gradually transformed to the expected two lines of 2:1 intensity at -108.4 (6W) and -110.1 (3W) ppm with ca.

10 equivalents of $H_2O.^{11a)}$ They have also observed the two-line ^{183}W NMR spectra for the $(Bu_4N)_5H_2SiW_9V_3O_{40}$ in dry CD₃CN by the addition of 100 equivalents of water, at -105.0 ppm (6W) and -109.5 (3W), but for the $(Bu_4N)_7SiW_9V_3O_{40}$ in dry CD₃CN at -81.1 (6W) and -101.4 ppm (3W). These papers and observations are of historical significance as the first proven examples of prototypic tautomerism in polyoxometalates.

Solution ²⁹Si NMR and Solid-State CP/MAS and GHD/MAS ²⁹Si NMR Spectra. Solution ²⁹Si NMR spectrum of 1 in D₂O (Fig. 5(b)) shows only one resonance at $\delta = -82.8$ ppm; in 2 the signal appears at $\delta = -82.9$ ppm. The singlet-line spectrum in 4 was observed at $\delta = -82.8$ ppm in D₂O and $\delta = -82.5$ ppm in DMSO- d_6 . These chemical shifts are in a reasonable region, as expected for the SiO₄ group occupying the central tetrahedral site in the Keggin structure. ^{11c,11d)} However, the countercation does not significantly influence the chemical shifts of the solution ²⁹Si NMR.

On the other hand, solid-state CP/MAS ²⁹Si NMR at 25 °C was measured at -81.5 ppm for 1 (Fig. 5(a)) and at -81.7ppm for 2, and solid-state GHD/MAS ²⁹Si NMR at 25 °C at -81.8 ppm for 1, at -81.9 ppm for 2, at -81 ppm for 3, and at -81.6 ppm for 4 were measured. The variabletemperature (VT) GHD/MAS ²⁹Si NMR spectra for 1 were also measured at -79 ppm at 70 °C and at -81 ppm at 100°C. From the VT solid-state GHD/MAS ³¹P NMR recently measured for the Dawson-type P₂W₁₅Nb₃O₆₂⁹⁻ polyoxoanion with different (Li⁺, Na⁺, K⁺, and Cs⁺) countercations, it has been found that the hydration structure around this polyoxoanion is significantly influenced by the countercations. ^{1j)} The present solid-state ²⁹Si NMR measurements were almost insensitive to the cation-dependent hydration environment around the SiW₉Nb₃O₄₀⁷⁻ polyoxoanion; this is despite the fact that TG/DTA measurements indicate that the hydration structure is likely to be significantly changed by the different countercations.

Compared with the NMR of constitutional elements, such as ³¹P, ¹⁸³W, ⁵¹V, and ²⁹Si of the heteropolyanions, it is not surprising that the ²⁹Si NMR is not highly sensitive to the environment, solvents, or to the ²⁹Si NMR measurement in either solution or the solid-state. In fact, for the unsubstituted heteropolytungstate, H₄SiW₁₂O₄₀·26H₂O, the ²⁹Si NMR in D_2O at -84.7 ppm and the solid-state ²⁹Si NMR at -85.0ppm have been reported and are virtually identical. 11b) Furthermore, in the solution the ²⁹Si NMR spectra of the related Keggin-type tri-substituted heteropolytungstates the following are observed: one narrow line at -83.0 ppm for (Bu₄N)₄H₃SiW₉V₃O₄₀ in CD₃CN with ca. 10 equivalents of H_2O , one line at -84.19 ppm for $(Bu_4N)_6HSiW_9V_3O_{40}$ in CD_3CN , a singlet at -83.85 ppm for $(Bu_4N)_5H_2SiW_9V_3O_{40}$ in CD₃CN following the addition of 100 equivalents of water, one line at -83.38 ppm for $(Bu_4N)_7SiW_9V_3O_{40}$ in CD_3CN , and one line at -83.5 ppm for K₆HSiW₉V₃O₄₀·3H₂O in $D_2O.$ ^{11a)}

Conclusion

In conclusion, analytically pure forms of the water-sol-

uble, alkali metal salts of the Keggin-type heteropolyoxoanion, $M_7SiW_9Nb_3O_{40}$ (M=Li⁺, Na⁺, K⁺, and Cs⁺) have been isolated, in 53, 56, 25, and 27% yields and on a 2.3, 2.6, 1.1, and 1.5-g scale, respectively. These new salts have been unequivocally characterized, both in solution and in the solid-state, and the full details of the synthesis and isolation were presented. The molecular formula of $M = K^+$ compound 1 was established by a positive ion FABMS spectrum. The clean two-line ¹⁸³W NMR spectra, with a 2:1 intensity ratio in D_2O , demonstrate an overall $C_{3\nu}$ symmetry of the SiW₉Nb₃O₄₀⁷⁻ polyoxoanion. The effects of the alkalimetal countercations on the SiW₉Nb₃O₄₀⁷⁻ were observed in the solid-state as a cation-dependent thermal-stability of the Keggin structure. The order of the relative thermal-stability was found to be: K^+ salt $1 \gg Na^+$ salt $4 \gg Li^+$ salt $2 > Cs^+$ salt 3. In the solid-state ²⁹Si NMR spectra, no significant effect of the countercation is observed. This is in contrast to the Dawson-type heteropolytungstates, in which the hydration structure around the P₂W₁₅Nb₃O₆₂⁹⁻ polyoxoanion is significantly influenced by the countercations, with resulting solid-state ³¹P NMR spectral changes through solid-state ion-pairing interactions between the cation and the P₂W₁₅Nb₃O₆₂⁹ polyoxoanion. The cation-dependent properties of the present SiW₉Nb₃O₄₀⁷⁻ heteropolytungstates manifest themselves, instead, in: the amounts of intrinsic hydrated water and adsorbed water, solubilities in water and insolubility in organic solvents, and in the ease of crystallization—especially of the K⁺ salt. The title complexes are also of interest as a possible new type of solid-base catalysts; studies of such catalyses are planned.

The authors thank Professor R. G. Finke, Colorado State University, for his helpful suggestions during this work and Mr. Brian Arbogast, Oregon State University, for his measurements of FABMS spectra. One of us (K. N.) also gratefully acknowledges financial support by a Grant-in-Aid for Scientific Research (C) No. 10640552 from the Ministry of Education, Science and Culture.

References

1) a) K. Nomiya, M. Kaneko, N. C. Kasuga, R. G. Finke, and M. Pohl, Inorg. Chem., 33, 1469 (1994); b) D. J. Edlund, R. J. Saxton, D. K. Lyon, and R. G. Finke, Organometallics, 7, 1692 (1988); c) K. Nomiya, M. Pohl, N. Mizuno, D. K. Lyon, and R. G. Finke, Inorg. Synth., 31, 186 (1997); d) M. Pohl, Y. Lin, T. J. R. Weakley, K. Nomiya, M. Kaneko, H. Weiner, and R. G. Finke, Inorg. Chem., 34, 767 (1995); e) K. Nomiya, C. Nozaki, M. Kaneko, R. G. Finke, and M. Pohl, J. Organomet. Chem., 505, 23 (1995); f) R. G. Finke, D. K. Lyon, K. Nomiya, and T. J. R. Weakly, Acta Crystallogr., Sect. C, C46, 1592 (1990); g) R. G. Finke, D. K. Lyon, K. Nomiya, S. Sur, and N. Mizuno, *Inorg. Chem.*, 29, 1784 (1990); h) M. Pohl, D. K. Lyon, N. Mizuno, K. Nomiya, and R. G. Finke, Inorg. Chem., 34, 1413 (1995); i) An improved synthesis of the monomer $[(n-C_4H_9)_4N]_9P_2W_{15}Nb_3O_{62}$, without the preparation of its anhydride form, has recently been reported: H. Weiner, J. D. Aiken, III, and R. G. Finke, Inorg. Chem., 35, 7905 (1996); j) K. Nomiya, C. Nozaki, K. Miyazawa, Y. Shimizu, T. Takayama, and

- K. Nomura, Bull. Chem. Soc. Jpn., 70, 1369 (1997).
- 2) a) D. K. Lyon and R. G. Finke, *Inorg. Chem.*, **29**, 1787 (1990); b) N. Mizuno, D. K. Lyon, and R. G. Finke, *J. Catal.*, **128**, 84 (1991); c) Y. Lin and R. G. Finke, *J. Am. Chem. Soc.*, **116**, 8335 (1994); d) M. W. Droege and R. G. Finke, *J. Mol. Catal.*, **69**, 323 (1991); e) N. Mizuno, H. Weiner, and R. G. Finke, *J. Mol. Catal.*, **A114**, 15 (1996); f) J. D. Aiken, III, Y. Lin, and R. G. Finke, *J. Mol. Catal.*, **A114**, 29 (1996).
- For example: a) A. Corma, Chem. Rev., 95, 559 (1995); b)
 L. Hill and C. M. Prosser-McCartha, Coord. Chem. Rev., 143, 407 (1995).
- 4) a) R. G. Finke and M. W. Droege, *J. Am. Chem. Soc.*, **106**, 7274 (1984); b) R. G. Finke, K. Nomiya, C. A. Green, and M. W. Droege, *Inorg. Synth.*, **29**, 239 (1992); c) Y. Lin, K. Nomiya, and R. G. Finke, *Inorg. Chem.*, **32**, 6040 (1993); d) K. Nomiya, C. Nozaki, A. Kano, T. Taguchi, and K. Ohsawa, *J. Organomet. Chem.*, **533**, 153 (1997).
- 5) P. A. Van Der Meulen and H. L. Van Mater, *Inorg. Synth.*, **1**, 24 (1939).
- 6) Solid CsBF₄ was isolated as colorless, needle crystals by a stoichiometric reaction of 9.6 mL (46 mmol) of 30% aqueous HBF₄ solution with 6.9 g (46 mmol) of CsOH in 20 mL water, followed by recrystallization from 60 mL water. Yield: 3.3 g (44%). The FT-IR spectrum measured as KBr disk: 1654s, 1302m, 1082s, 1027s, 525 m cm $^{-1}$.

- 7) For 30—60 mM H₂O solutions of the K₇ (1) and Na₇ (4) salts, which were in the same range of the concentration used for the ¹⁸³W NMR measurements in D₂O, the measured pH level was between 7.4 and 7.6. The pD value was calculated by pD = pH +0.4: a) P. K. Glasoe and F. A. Long, *J. Phys. Chem.*, **64**, 188 (1960); b) R. Massart, R. Contant, J. M. Fruchart, J. P. Ciabrini, and M. Fournier, *Inorg. Chem.*, **16**, 2916 (1977).
- 8) a) R. G. Finke, M. W. Droege, J. C. Cook, and K. S. Suslick, *J. Am. Chem. Soc.*, **106**, 5750 (1984); b) K. S. Suslick, J. C. Cook, B. Rapko, M. W. Droege, and R. G. Finke, *Inorg. Chem.*, **25**, 241 (1986); c) R. G. Finke and B. Rapko, *Organometallics*, **5**, 175 (1986).
- 9) a) C. Rocchiccioli-Deltcheff and R. Thouvenot, *Spectrosc. Lett.*, **12**, 127 (1979); b) C. Rocchiccioli-Deltcheff, R. Thouvenot, and M. Dabbabi, *Spectrochim. Acta, Part A*, **33**, 143 (1977).
- 10) a) I. Kawafune and G. Matsubayashi, *Chem. Lett.*, **1992**, 1869; b) I. Kawafune and G. Matsubayashi, *Bull. Chem. Soc. Jpn.*, **69**, 359 (1996).
- 11) a) R. G. Finke, B. Rapko, R. J. Saxton, and P. J. Domaille, J. Am. Chem. Soc., 108, 2947 (1986); b) J. B. Black, N. J. Clayden, L. Griffiths, and J. D. Scott, J. Chem. Soc., Dalton Trans., 1984, 2765; c) R. Thouvenot, M. Fournier, and C. Rocchiccioli-Deltcheff, J. Chem. Soc., Faraday Trans., 87, 2829 (1991); d) C. S. Backwell and R. L. Patton, J. Phys. Chem., 92, 3965 (1988).